

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

EXAMINATION OF FOURTH LEVEL OF PMGP STUDENTS

COURSE TITLE Interpretation and modeling of seismic data Course Code: PMGE 4109

: March 20, 2021 TERM: FRIST TOTAL ASSESSMENT MARKS: 180 TIME ALLOWED: 2 HOURS

Answer the following questions (Illustrate your answers with clear drawings).

1. Choose the best answer

(تصحيح الكتروني)

(90 degree)

- 1) Seismic picking is a process should be done based on Petrel.....:
 - a) Plot window
 - b) Correlation window
 - c) Interpretation window
 - d) Mapping Window
- 2) The process that requires to collect the seismic picking, fault polygons, area polyout in one window to get the structure map called:
 - a) Make / Edit Surface
 - b) Coordinate system.
 - c) Well correlation
 - d) Well Section
- 3) The first step to setup new petrel project is to define:
 - a) Seismic picking
 - b) · Seismic attributes
 - c) Mapping and gridding
 - d) The project coordinates and units
- 4) The following information is the most important when loading a new well to Petrel
 - a) Well name
 - b) Well Coordinates
 - c) K.B
 - d) All the previous
- 5) A relationship required to show the formation tops in depth over the seismic section in time domain called:
 - a) Horizon\Fault
 - b) Well\Formation Top
 - c) Time\Depth
 - d) Volume\Surafce
- 6) The main input to calculate seismic volume attribute is:
 - a) Formation tops
 - b) VSP
 - c) Surfaces
 - d) Seismic Volume

7)	a) b) c)	e fault sticks should be interpreted based on: Grid window Seismic interpretation window Well correlation window Intersection window
8)	a) b) c)	e fault polygons should be interpreted based on: Grid window Seismic interpretation window Well correlation window Intersection window
9)	a) b). c)	s a way we use for the seismic picking tool: Manual picking 2D auto-track 3D auto-track All the previous
10)	a) b) c)	ool we should use in order to draw the fault polygons: Polygon editing tool Make surface tool Seismic attribute tool Well tie tool
11)	a) b) c)	rel TM software can integrate multiple data sets such as Core data Outcrops data Seismic data All of the above
12)	a) b) c)	using Petrel TM software we can make seismic interpretation for Horizons Faults Polygons All of the above
13)	a) b) c)	Petrel TM software well log data can be imported informat. Doc Ascii Petd Segy

14) The acoustic log is generally calibrated with	before combining with the density log to
produce acoustic impedance.	

- a) check-shot
- b) Seismic data
- c) Well log data
- d) All of the above
- 15) There are many types of VSP survey except
 - a) Stable source VSP
 - b) Zero-offset VSP
 - c) Offset VSP
 - d) Movable source VSP
- 16)is contouring variations in reflection time interval between two reflectors.
 - a) Isochron maps
 - b) Seismic Maps
 - c) Isopach maps
 - d) Velocity map
- 17) The main idea of loop is tie between two seismic lines
 - a) Inline & Crossline
 - b) Inline & Inline
 - c) Crossline & Crossline
 - d) Arbitrarly line & Inline
- 18)is the description of the position of the wavelet's peak amplitude on a relative time scale.
 - a) Phase
 - b) Polarity
 - c) Trough
 - d) Reflection Coefficient
- 2. Explain the different steps to form 3D structural modeling from the available seismic data and wells. (45 degree)
- 3. Write short notes on the following:-

(45 degree)

- a. Synthetic seismograms.
- b. Vertical seismic profile (VSP).
- c. 2D and 3D seismic surveying.

EVAMBIEDO	DR. MOATAZ BARAKAT
EXAMINERS	DR. RAMY AMAD EL-DIN

DATE:

ANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

Petroleum & Mining Geology Program (PMGP)

Final Exam For The Fourth Level of PMGP Students					
Examiners: Prof. I. Salem Prof. B.el-desouky		COURSE TITLE : ORE MINERALOGY	COURSE CODE: PMGE 4101		
22-2-2021	FIRST	Total Assessment: 40 marks	TIME ALLOWED: 30 mins.		

True or False

- 1-All ores are opaques and not all opaques are ores.
- 2-Rotatble stage should be centered to polished sections.
- 3-The primary enlargement is due to ocular lenses.
- 4-Ilumintary system in ore microscope is substage.
- 5-There are two types of reflectors.
- 6-The basal section of tetragonal and hexagonal systems are anisotropic.
- 7-In ore microscope the analyzer found in illuminating system.
- 8-Color is one of the qualitative optical properties.
- 9-Kalb light line test is to examine the relative hardness.
- 10-Bireflectance is the change in reflectance where as reflection pleochroism is change in color.
- 11-In polished sections, relief means even surface.
- 12-There is an opposite relationship between the free-working distance and power magnification of objective lens.
- 13-The secondary image is due to objective lens.
- 14-The relationship between angular aperture and the power of magnification of objective lens is opposite relationship.
- 15-The ocular lens used in ore photography should be equipped with crosshairs and grid.
- 16-In ore microscopic the polished section is perpendicular to the incident light beam.
- 17-Polishing hardness is one of the quantitative properties.

- 18-In preparation of polished section the polishing process comes before grinding.
- 19-Internal reflections are characteristics of transparent minerals.
- 20-Anisotropic color ore is the color exhibited by an anisotropic on rotating the stage.
- 21- The ore minerals are capable of solid solutions.
- 22-Covellite-chalcocite solid solution is capable at temperature at about 75°C.
- 23- Silver rich gold commonly shows a zonal texture.
- 24- If arsenic is present in excess of 4% but less than 30%, Cu₃As is formed.
- 25- Most native gold contains a large amount of copper in solid solution.
- 26- The unmixing of a solid solution takes place by the diffusion of the solvent atoms through the lattice of the solute substance.
- 27- The emulsion intergrowths occur as lamellar or rod-like.
- 28- The homogenous single phase solid solution, is named according to the major metal.
- 29- Hematite ilmenite exsolution texture was formed at temperatures above 600C.
- 30- Sphalerite in chalcopyrite is capable of solid solution at temperatures above 350.
- 31- With slow cooling, fine cloth or box like network of ulvospinel arranged along (001) direction of magnetite.
- 32- At low temperatures, hematite and magnetite form a partial solid solution.
- 33- If the concentric lamination is present, they are spherulites.
- 34- If the successive crusts of the different minerals surrounded breccias fragements, comb texture may result.
- 35- Oolitic textures generally indicate deposition in a marine environment.
- 36- Supergene minerals are the alteration products of hypogene minerals.
- 37- Colloidal textures are produced by precipitation from colloidal solutions and gels.
- 38- Pentlandite will dissolve in pyrrhotite to the extent of about 40% at temperatures above 425 to 450°C.
- 39- Chalcocite invading a mixture of pyrite and chalcopyrite generally shows a preference for the pyrite.
- 40- Caries texture is the relation between the grain boundaries of host and metasome mineral.

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

EXAMINATION for Petroleum and Mining Geology Program

(PMGP)

COURSE TITLE: GeochemistryApplied COURSE CODE:

DATE: DEC.2020 TOTAL ASSESSMENT MARKS: TIME ALLOWED:2 HOURS

Part (I) (marks)

A-Comment of the following: (15 marks)

- 1- LREE are highly incompatible elements relative to HREE.
- 2- Mg proceeds Fe in olivine during magma crystallization and Ca proceeds Na in plagioclase during magmatic crystallization.
- 3- If KD is less than one then the con. of the element will increases with crystallization
- 4- Behaviour of Naand Kduring magmatic Crystallization.
- 5- Some trace elements are compatible with crystal structure of major elements.

B- compare between the following pairs: (15 marks)

- 1. LILE and HFSE.
- 2. Tektites and Sidrolite.
- 3. Isochron and Primodal composition.
- 4. Heavy and Light isotopes.
- 5. Captured trace elements and camouflage elements.

C-Explain by graphs how to solve the fowling: (20 marks)

- 1. Parent age and metamorphic age using Rb/Sr Method of dating.
- 2. Kaolinite and Montmorillonite depositional composition.
- 3. Migration of half values of Pb²⁰⁶ andPb²⁰⁷during U lead system isotope measurement.
- 4. Decay of daughter isotope and growth of parent isotope.
- 5. Follow up crystallization of a magmatic liquid made of 20% Albite and 70% Anorthite with decreasing temperature.

Part (II) (50 marks)

1-Put $\sqrt{\text{or} \times \text{marks and correct the wrong ones:-}(10 \text{ marks})}$

1-The positive values of quartz no indicate undersaturated rocks

انظر خلفه

- 2- The core are mainly formed from Lithophile elements whereas the mantle are mainly formed from Chalcopile elements such as Mg and Li
- 3- XRF used for determine isotopic ratios in rocks and minerals
- 4- K- Ar dating used for older rocks whereas U- Pb dating used for determine age of metanmorphism

<u>2-Complete the followings: (25 marks)</u>
1- S-type granites characterize bySiO2 andNa2O+ K2O with magma type and characterize by some index minerals such as
2-Geochemical classification of the elements based on,, and classified into,
3-Within plate granites aretype granites, formed in setting and have magma type.
4-The mantle is mainly formed from elements whereas the crust is mainly formed from elements such as
5- Meteorites are classified into, and similar to, respectively.
6-Uranium - thorium mineralization occurs in rocks as contains high amount of,elements
7- Ni and Cr elements occurs in rocks such as, contains high amount ofelements
8Volcanic arc granites have a magma type and originated in tectonic setting
9-ICP used for determine Whereas XRF used foranalysesas
10-Mineral chemistry carried out using instrument and measure the concentration of elements as

3- Write briefly on the following: (15 marks)

- 1- Discuss the geochemical aspects of crystallization of magmas as reveal by reaction series.
- 2- Geochemical characteristics of different types of granites (A-, I-, S-, M-type) and their tectonic setting
- 3- Discuss the analytical procedures and different techniques used for isotope studies.
- 4- Write on the rule of minor and trace elements in metamorphic rocks and give example for their applications in study of ores
- 5- Discuss Different steps and methods for determine the chemistry of minerals

 Examiner:	Prof. Mohamed FouadGhoneim	Examiner: Prof. Mohamed Metwaly Abu Anbar

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

EXAMINATION for Petroleum and Mining Geology Program (PMGP)

Geo		<u>Geochemistry Applied</u>	COURSE CODE:	
DATE:	DEC.2020	TOTAL ASSESSMENT MARKS:	TIME ALLOWED:2 HOURS	

Part (I) (marks)

A-Comment of the following: (15 marks)

- 1- LREE are highly incompatible elements relative to HREE.
- 2- Mg proceeds Fe in olivine during magma crystallization and Ca proceeds Na in plagioclase during magmatic crystallization.
- 3- If KD is less than one then the con. of the element will increases with crystallization
- 4- Behaviour of Naand Kduring magmatic Crystallization.
- 5- Some trace elements are compatible with crystal structure of major elements.

B- compare between the following pairs: (15 marks)

- 1. LILE and HFSE.
- 2. Tektites and Sidrolite.
- 3. Isochron and Primodal composition.
- 4. Heavy and Light isotopes.
- 5. Captured trace elements and camouflage elements.

C- Explain by graphs how to solve the fowling: (20 marks)

- 1. Parent age and metamorphic age using Rb/Sr Method of dating.
- 2. Kaolinite and Montmorillonite depositional composition.
- 3. Migration of half values of Pb²⁰⁶ andPb²⁰⁷during U lead system isotope measurement.
- 4. Decay of daughter isotope and growth of parent isotope.
- 5. Follow up crystallization of a magmatic liquid made of 20% Albite and 70% Anorthite with decreasing temperature.

Part (II) (50 marks)

1-Put $\sqrt{\text{or} \times \text{marks}}$ and correct the wrong ones:-(10 marks)

1-The positive values of quartz no indicate undersaturated rocks

انظر خلفه

ANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

Petroleum & Mining Geology Program (PMGP)

and the present		Final Exam For The Fourth Level of PMGP Students			
	Examiners: Prof. I. Salem Prof. B.el- desouky		COURSE TITLE : ORE MINERALOGY	COURSE CODE: PMGE 4101	
DATE:	22-2-2021	FIRST	Total Assessment: 140 marks	TIME ALLOWED: 120 mins.	

PART I

I-Write on the following:

(40 marks)

a- Objective lenses

b- Colour

c- Rotatable stage

- d- Grinding and polishing abrasive materials.
- e-Equations of Vicker s microindentation hardness.

II-Answer the following with drawing only:

(30 marks)

- a- Componentsp of ore microscope.
- b- Mechanical and thermal zones of deformation.
- c- Shapes and fracture characteristics of microindentation hardness.

PART II

Answer the following questions:

(70 marks)

- 1- Colloform textures in supergene minerals.
- 2-Replacement textures
- 3- Chalcopyrite-sphalerite, Bornite-chalcocite and Pentlandite-pyrrhotite exsolution textures.
- 4-Hematite- ilmenite, Ulvospinel-magnetite and Hematite- magnetite exsolution textures.
- 5-Write short notes on:
- a- Growth zoning

b-Oolitic texture

TANTA UNIVERSITY - FACULTY OF SCIENCE - DEPARTMENT OF GEOLOGY EXAMINATION FOR SENIORS (FOURTH YEAR) OF PETROLUEM AND MINING GEOLOGY PROGRAM COURSE TITLE: REMOTE SENSING AND GIS APPLICATIONS COURSE CODE: PMGE 4105 DATE: 6 MARCH, 2021 TERM: FIRST TOTAL ASSESSMENT MARKS: 180 TIME ALLOWED: 2 HOURS

PART 1 (One Hour - 90 Marks)

Vrite BRIEFLY with drawing on the following:
- Photo-texture, drainage density and trellis drainage pattern and its geologic significances. (20 Mark
- Compare between characteristics of photo-lineation resulting from foliation and heterogeneous
dipping beds. (25 Marks
- Photogeologic recognition of intrusive igneous rocks and faults. (20 Marks
- Compare between photogeologic appearances of coarse clastic and fine clastic rocks. (25 Mark
PART 2 (One Hour - 90 Marks)
- Write BRIEFLY on two of image classification algorithms. (20 Marks
- Compare between periodic line dropouts and line striping as image cosmetic corrections. (20 Mark
- Choose the Correct Answer (50 Marks
1 is used as a reference to Earth's surface heights. a) The Geoid b) The ellipsoid c) The Coordinate systems
2- One of the GIS software packages available on the market is
3- Functional components of a GIS such as
4- Direct spatial data capture such as
5
6-Buffer zone generation (or buffering) is one of the best known
7 consist of lines of geographic latitude and longitude lines. a) Local horizontal datum b) 3D Geographic coordinates c) 2D Geographic coordinates
8- In a conformal map projection the between lines in the map are identical to the angles between the original lines on the curved reference surface.
a) The areas b) The angles c) The length
9- The ability to manage and process spatial GIS data needs advanced
10- The presentation of spatial data can be appeared on

Z A BÆINIED C	Duof Mohmoud Ashma	wy Prof. Alaa Masoud	Prof. Samir Kamb
25- The atm a) Before	-	e performed in b) After	nage processing c) Nothing of them
		e types of o) Geometric correction	c) Radiometric correction
23- The pro a) Five s		tion typically involvesb) Four steps	c) Three steps
divided l a) Produ	by the total number of p cer accuracy	fied pixels (i.e, the sum of the di ixels checked is known asb) Overall accuracy	c) User accuracy
21- The a) Error		sed in the image classification val b) Training areas	lidation c) a and b
20a) Manu		requires that the operator is famili b) Unsupervised	ar with the area of interest. c) Supervised
19- The err a) Line s		nission of image data or to a temp b) periodic line dropouts	oorary disturbance is known as c) Random noise
18- The for a) Haze	mula of DN'= DN/Sin	(α) is used to correct b) Sun angle	c) Skylight
	based surface analysis s aspect calculation	uch asb) Hillshading	c) a and b
-	•	pe ofb) User-controlled classific	
	nsion two or three.	b) Vector	s, mostly as a square tessellation c) a and b
14- Automa a) Mous		data input can be carried by b) Scanner	device c) Monitor
on facto	rs such as	kage, which is necessarily 'better b) The expertise of its user	
12- The Un a) Cylin		cator (UTM) projection is a b) Conical	projection type c) Azimuthal
surface (a) The e	on a flat map.	b) Global horizontal datum	n c) Map projection

©Good Luck©

TANTA UNIVERSITY FACULTY OF SCIENCE GEOLOGY DEPARTMENT

FINAL EXAMINATION FOR FOURTH LEVEL STUDENTS OF PMGP

COURSE TITLE: Well Logging

COURSE CODE: PMGE 4103

TIME ALLOWED: 2 HOURS

DATE: 10/03/2021

TOTAL ASSESMENT MARKS: 180

TERM: FIRST

1-	Give reasons on the followings (45 ma	ırks)
a.	Trubo drilling is better than rotary one in hard rock perforation.		
b.	Induction logging device can be worked in holes filled with oil base mud.		
c.	Micronormal and microinverse curves are used as hydrocarbon indicator.		
2-	Explain the principles of measurements of the following devices (45 ma	arks	;)
a.	Spherically focused log (SFL).		
b.	Conventional electric resistivity logging tool.		
c.	Microlaterolog (MLL).		
3-	Mark (V) in front the correct answer and (X) in front the wrong answer: (22.5 Ma	arks)
	The neutron porosity is consider effective porosity	()
	The permeability can be directly obtained from log measurements	()
	The secondary porosity can be directly obtained from sonic tool measurements	()
	The total porosity can be directly obtained from density tool measurements	()
	The shale volume can be obtained from CGR curve	()
6.	Caliper logs are used for identifying reservoirs	()
7.	The big separation between neutron and density logs indicating presence of water	()
8.	The spectral gamma ray log is consider as a porosity log	()
9.	High count rates at detectors are good indication for high density formation	()
10). The Green pattern is characterized by both Azimuth and Dip are Uniform	()
11	The type of clay mineral can be identified from neutron tool	()
12	2. The calculation of total porosity from density depend on the matrix density of the formation	()
13	3. Determination of magnitude and direction of formation dip is consider one of Density tool		
	applications ()		
14	I. Tri – porosity cross-plots are used to determine the lithology and porosity of the reservoir	()
15	5. The Sonic porosity tool can run in any type of fluid filled borehole	()
4-	Choose the correct answer: (22.5 Ma	arks	;)
1.	The big separation between neutron and density logs indicating:		
a.	Presence of Gas b. Presence of Oil c. Good Permeability		
2.	The "Density" porosity is :		
a.	Effective porosity b. Total porosity c. Secondary porosity		
3.	The photoelectric absorption (Pe) is consider:		
a.	Porosity indicator b. Lithology indicator c. Hydrocarbon indicator		
4.	The Caliper log is a continuous profile showing variations in:		
a.	Density b. Porosity c. Diameter		

5. The count	rates at Neutro	n tool detector	increase wher	n hydrogen cond	entration is:		
a. High	h	b. Low	7	c. Mode	rate		
6. The preser	nce of steel casi	ng will	gamm	na ray count rate	es :		
a. Incr	ease	b. Redi	ıce	c. Affec	ct positively		
7. Neutron to	ool can be run ir	า:	•				
a. Case	ed-hole only	b. Ope	en-hole only	c. Open	and cased hole	es	
8. The Epithe	rmal neutron to	ool use	sour	rce:			
a. Che	mical	b. Elec	etronic	c. Organ	nic		
9	pattern is	characterized b	y both Azimut	h and Dip magn	itude are rand	lom :	
a. Gree	en	b. Yell	low	c. Red			
10. The gamr	na ray log motii	fs typically exhi	bit consistent a	and relatively lo	w gamma ray v	values in :	
a. Bell	Shape	b. Funn	iel Shape	c. Cylin	der Shape		
11. In Neutro	n tool, count ra	ites at detector	****************	When hydrog	en concentrati	on is low:	
a. Deci	rease	b. Incre	ease	c. Not A	ffected		
12. In Sonic to	ool, the transm	itters emit	into fo	ormation :			
a. Gam	ıma Ray	b. Neu	trons	c. Sound	Waves		
13. Red patte	rn followed by	Blue pattern ar	nd both patterr	ns have the sam	e Azimuth as F	ault in::	
a. Non	mal Fault	b. Rev	erse Fault	c. Strike	– slip Fault		
14. The spect	ral gamma ray	tool distinguish	es the three co	omponent (Pota	ssium, Thoriur	n or	
Uranium)	by the	Of their o	characteristic g	gamma emissior	n:		
a. Vertical	Resolution	b. Wave	elengths	c. Depth	of investigation	on	
15. Dia – Pord	osity cross-plots	s are used to de	termine				
a. Minerals (Only	b. Poros	sity Only	c. Porosi	ity and Litholog	gy	
			•				
5- A) Mentio	on the applica	itions (Uses) a	of the Sonic Ic	paging tool.		(7.5 Marks)	
				y logging tool.			
D) Give s	nort notes an	out the princi	hie or <u>neusit</u>	y logging tool.		(7.5 Marks)	
6- Given the	below data,	calculate the	following:			(30 Marks)	
a. Shale Volu	ıme by Using L	inear Method.		b. Total Po	rosity from De	nsity Log.	
c. Secondary	c. Secondary Porosity. d. Hydrocarbon Saturation (S _h).						
GR _{min} API	GR _{max} API	ρb _{mat} gm/cc	ρb _f gm/cc	Δt _{mat} μsec/ft	Δt _f μsec/ft	Rt ohm.m	
15	50		<u> </u>				
15	70	2.66	1.1	55.5	189	.150	
GR _{log} API	ρb _{log} gm/cc	Δt _{log} μsec/ft			D ohm m		
Oldog 7111	polog gni/cc	Enlog 4300/11	a	m	$\mathbf{R}_{\mathbf{w}}$ ohm,m		
· 20	2.46	65	1	2	0.02	2011	
		4 3 6 4			to a long part of the second		
		احتضادها		<u> </u>		3	

Good Luck

TANTA UNIVERSITY FACULTY OF SCIENCE DIEPARTMENT OF GEOLOGY EXAMINATION FOR SENIORS STUDENTS OF GEOLOGY COURSE TITLE: PETROPHYSICS COURSE CODE: PMGE4111 DATE: 15/3/ 2021 SEMESTER:FIRST TOTAL ASSESSMENT MARKS: 120 2 HOURS

Answer the following questions:

1-Discus the following relations:	(33 marks)
a) Capillary pressure- water saturation.	
b) Porosity- permeability.	
c) Water saturation-water formation resistivity (Rw).	(00 ca
2-Write on the following:	(33 marks)
a) Rock wettability.	
b) Reservoir quality index	•
c) Factors affecting the physical properties of reservoir rocks	
	(24 marks)
3-Complete the following statements:	(= 1 3333
a) Geological classification of permeability classified into	
1	
2	***************************************
b) Diagensis process reducing porosity are:	
122-	,
0	
c) Applications of formation resistivity factor are 1	
c) Applications of formation resistivity factor and the second se	
d) Capillary pressure is defined as	
e) Electrical resistivity is affected by 1	2
e) Electrical resistivity is affected by 144	
o-, norganity for the f	following reasons:
f) Log porosity is practically chosen over core porosity for the f	
122	
3	